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A New Class of Basis Functions for the
Solution of the E-Plane Waveguide
Discontinuity Problem

MOOK-SENG LEONG, MEMBER, IEEE, P. S. KOOI, aAND CHANDRA

Abstract —A class of basis functions which satisfies the edge condition
explicitly is presented to improve the convergence of the mode-matching
method. Using these basis functions, we analyse the 2-to-1 E-plane
junction, make comparisons with other available methods of solution, and
provide correction terms for its quasi-static solution.

I. INTRODUCTION

AVEGUIDE JUNCTION scattering problems have

been studied extensively. Methods of solution in-
clude the conformal mapping [1], variational methods [2],
[3], singular integral equation method [4], [5], modified
residue calculus techniques [6], mode matching [7], [8] and
moment methods [9], [10].

Mode matching is rigorous and systematic. But it has
some shortcomings. First, it suffers from the problem of
relative convergence [11]. This can be circumvented by
taking a proper ratio in the truncation of infinite wave-
guide modes [8], [12], [13]. Another problem with mode
matching is that the convergence is slow when the aperture
electric field or magnetic field is singular at the edges. This
been solved by Lyapin ez al. [14] by using aperture basis
functions which satisfy the edge condition explicitly. Their
basis functions are, however, not very versatile. For exam-
ple, they cannot be applied to the structures studied in [15]
and [16]. In this paper, we present a new class of basis
functions that can be applied to a fairly general type of
E-plane discontinuity problem. In addition, we also pro-
pose correction terms for the quasi-static solutions given in
[15] and [16] to improve the accuracy.

II. MoOMENT METHOD

The problem to be studied is shown in Fig. 1. The
structure is quite general and it includes the cases of
waveguide step (enlargement or reduction), iris, misalign-
ment, etc. A TEM wave of unit amplitude is assumed to be
incident from the left of waveguide 1. We express the total
transverse electric and magnetic fields in terms of infinite
waveguide modes. Matching the tangential electric and
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Fig. 1. E-plane waveguide discontinuity.

magnetic fields across the aperture and leaving the aper-
ture electric field as the unknown, we obtain the following:
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where Euler’s number ¢,, the TM mode admittances Y;,,,
Y,,, and the cosine transform of aperture field E, are
defined, respectively, by the following expressions:
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where the complex square’ root is to take the value of its
principal branch, and

E (o B)= [*""E(y)cos[a(y=B)] &y (4)

We expand the aperture field in terms of the known
basis function e, (y) with unknown complex magnitude
A,,m=0,12..-, M. Applying Galerkin’s method [17],
we obtain a set of (M +1) by (M + 1) algebraic equations:

M
Z AmHmk=2Y1050(O’hl)9 k=0,1,--- .M (5)
n=0

0018-9480,/87 /0800-0705$01.00 ©1987 IEEE



706

where
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We choose the basis function to be

e (y)=k,(1—y) "(A+y) "PI77M(y) (T}

where
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and P (a, B) is the Jacobi polynomial [18]. The quantities
v and p are determined by the edge singularities at y = b,
+ hy and y = b,, respectively [6], [19]. They vary from 0
(no singularity) to 0.5 (iris-type singularity). For a 90°
corner, their values are given by [15] as

1 e 2¢
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T € €,

The cosine transform of e, ( y) as defined by (7) can be
evaluated in closed form [20] as

(8)
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where Re { } denotes the real part of { } and | F(q; b; z)
is the confluent hypergeometric function [18, ch. 13]. A
power series in z and an asymptotic expansion for large |z|
are available in [18].

Having obtaining 4, ’s, the reflection coefficient and the
normalized junction admittance can be obtained from

A

R="26,(0,0)-1 (10)
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In this section, by way of example of the application of
the basis functions, we consider the structure shown in Fig,
2, and we derive correction terms for the quasi-static
formulas given in [15] and {16].

Assuming that only the dominant mode propagates, it
can be shown that a variational expression for the normal-
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Fig. 2. 2-to-1 E-plane discontinuity.

ized junction susceptance is given by
jB 1
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where E is defined by (4) with A, =h and h,+ b, =b.
In the quasi-static limit, the modal admlttance becomes
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Using the above, the junction susceptance can be sep-
arated into two parts: the quasi-static contribution B, and

the correction term AB as
jB=jB,+ jAB

(14)

where
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jAB=

0)E(59)

nZi: ( 2n‘Y2(2)) (* O)} (16)

2b°

Fow 0

The first infinite series of AB has been truncated at n =1
and the second series at n=2.

For the case where 4 =0 (without diaphragm), B, can
be approximated by Montgomery and Lewin’s quasi-static
solution (ML) solution {15}]:
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y is the Euler constant = 0.5772, and ¢ is the logarithmic
derivative of the gamma function.

For the correction term AB, we approximate the aper-
ture field by

E(y)= gb-[Z‘”F(l—p)(l—Z—z)_y+ :—j (19)

where v is given by (8).

The first term in the square bracket gives the proper
singularity at the corner. The second term is added since
the aperture field is more uniform for ¢; > ¢,.

An improved ML solution can be obtained from (14),
(16), and (17) with E, given by [20]

J—v+1/2(b0‘) “ Jl/z(b“)

E(a,0) =
(@,0) (ba)_Hl/z € (ba)1/2

(20)

where J,(x) is the Bessel function of the first kind of order
v [18, ch. 9].

For nonzero d, B, is given by Ruehle and Lewin (RL
solution) [16] as
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The aperture field can be approximated by

E(y)= ‘/—§b3{2_"r(1— V)(l— ;_32)
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The term containing 4 /b in (22) is to account for the edge
singularity at y = h.
The transform of E, can be found to be [20]
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(23)

where H,(x) is the Struve function [18, ch. 12]. For h =0,
(23) reduces to (20).
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TABLE I
SUSCEPTANCE OF A CAPACITIVE SEMIDIAPHRAGM AS A FUNCTION OF THE
NUMBER OF Basts FUNCTIONS (M +1)

M 0 1 2 3 4
Numerical method 15935  1.5934 15931  1.5931 1.5931
Lyapin et al. 16123 15932 15931  1.5931 1.5931
hy=hy=hy=0; by=b,=2bs; A=25b,.
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Fig. 3. Susceptance of 2-to-1 E-plane discontinuity: comparison of
solutions.

IV. NUMERICAL RESULTS

We have computed the susceptance of a capacitive semi-
diaphragm by setting h, =h,=h;=0, b;=b, =2b,. The
results obtained from the moment method (numerical
method) compare very well with the exact solution. (in
terms of infinite series) given in [2, p. 452]. Our conver-
gence pattern is similar to that of Lyapin et al. [14]. Two to
three basis functions are sufficient to produce results accu-
rate to four or more significant figures, as shown in
Table I. ‘

We next generated results for the structure shown in Fig,
2. The junction susceptance is shown in Fig. 3-for A =0
(without diaphragm). Also shown are the solution by Sich
and Macphie using the conservation of complex power
technique [21], the quasi-static solution by Montgomery
and Lewin using the singular integral equation method
[15], and the conformal mapping solution given in Marcu-
vitz’s Waveguide Handbook [1] (for €, =¢, only). Our
numerical method agrees very well (to within 2 percent)
with the improved ML solution (which is the quasi-static
solution with correct terms). The agreement with the re-
sults of Sich and Macphie is fair, except near ¢, =e,,
where our results exhibit a discontinuity of slope. We
believe that the discontinuity in slope could be caused by
the presence of the nonlinear higher order terms in (16)
containing Y;,,Y,,,7Y,,, etc. The agreement with Marcu-
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Fig. 4. Susceptance of step-diaphragm junction. b= 0.1 X,.

vitz’s results at €; =€, further confirms the accuracy of
our results. Fig. 4 shows the susceptance for nonzero £ for
three chosen sets of values of ¢, and e,. Our results
derived from the moment method agree to within 2 percent
with Sich and Macphie’s solution [21]. It can be seen that
our improved RL solution (which is quasi-static with cor-
rection terms) also agrees very closely with the numerical
method and is significantly more accurate than the quasi-
static solution given by Ruehle and Lewin [16]. For ¢, =1
and €, = 3, as shown in Fig. 4, the required correctlon is
22.8 percent for h/b=0.

V. CONCLUSIONS

We have proposed a new class of basis functions for the
E-phase junction problem. They are versatile and the edge
singularities can be taken into account explicitly. Numeri-
cal results have been presented for the 2-to-1 E-plane
step-diaphragm junction. We have also proposed a method
to improve the accuracy of the quasi-static solution.
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