
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-35, NO. 8, AUGUST 1987

A New Class of Basis Functions for the
Solution of the E-Plane Waveguidle

Discontinuity Problem

MOOK-SENG LEONG, MEMBER, IEEE, P. S. KOOI, AND CHANDRA

Abstrrrct —A class of basis functions which satisfies the edge condition

explicitly is presented to improve the convergence of the mode-matching

method. Using these basis functions, we analyse the 2-to-1 E-plane

junction, make comparisons with other available methods of solution, and

provide correction terms for its quasi-static solution.

I. INTRODUCTION

w AVEGUIDE JUNCTION scattering problems have

been studied extensively. Methods of solution in-

clude the conformal mapping [1], variational methods [2],

[3], singular integral equation method [4], [5], modified

residue calculus techniques [6], mode matching [7], [8] and

moment methods [9], [10].

Mode matching is rigorous and systematic. But it has

some shortcomings. First, it suffers from the problem of

relative convergence [11]. This can be circumvented by

taking a proper ratio in the truncation of infinite wave-

guide modes [8], [12], [13]. Another problem with mode

matching is that the convergence is slow when the aperture

electric field or magnetic field is singular at the edges. This

been solved by Lyapin et al. [14] by using aperture basis

functions which satisfy the edge condition explicitly. Their

basis functions are, however, not very versatile. For exam-

ple, they cannot be applied to the structures studied in [15]

and [16]. In this paper, we present a new class of basis

functions that can be applied to a fairly general type of

E-plane discontinuity problem. In addition, we also pro-

pose correction terms for the quasi-static solutions given in

[15] and [16] to improve the accuracy.

II. MOMENT METHOD

The problem to be studied is shown in Fig. 1. The

structure is quite general and it includes the cases of

waveguide step (enlargement or reduction), iris, misalign-

ment, etc. A TEM wave of unit amplitude is assumed to be

incident from the left of waveguide 1. We express the total

transverse electric and magnetic fields in terms of infinite

waveguide modes. Matching the tangential electric and
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Fig. 1. E-plane waveguide discontinuity.

magnetic fields across the aperture and leaving

705

the aper-

tur~ electric field as the unknown, we obtain th; following:

where Euler’s number c., the TM mode admittances Y1.,

Y, ~, and the cosine transform of aperture field Et are

defined, respectively, by the following expressions:

(1,
en =

~=()

2, n#O
(2)

where the complex square root is to take the value of its

principal branch, and

We expand the aperture field in terms of the known

basis function em(y) with unknown complex magnitude

A~,, m=0,1,2,. . . , M. Applying Galerkin’s method [17],

we obtain a set of (M+ 1) by (M+ 1) algebraic equations:

M

~ A~H~, =2 Y1O:O(O,hJ, k= O,l,.. .,&f (5)
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where

Hn,k = f : Y1n/~
()

~,hl
/7=0 1

.:O(:l ~(;h,);(;h) ‘6)

+ ~ ~ Y,nc

We choose the basis function to be
Fig. 2. 2-to-1 E-plane discontinuity.

em(.Y)=~.l(l– Yl)-”(l +Yl)-p~A-v’-p)(Yl) (7)

where
ized junction susceptance is given by

2(v+~-1)4-~~ 2
k.=

B(M+l–v, m+l–p)~

2(y–d)
yl =

b3

d=h3+b3/2

and Pn( a, ~) is the Jacobi polynomial [18]. The quantities

v and p are determined by the edge singularities at y = b3
+ h j and y = b3, respectively [6], [19]. They vary from O

(no singularity) to 0.5 (iris-type singularity). For a 90°

corner, their values are given by [15] as

The cosine transform of e~( y) as defined by (7) can be

evaluated in closed form [20] as

jB 1

Y=10 Y,015:(0,0)

where ~f is defined by (4) with h ~= h and h ~+ b3 = b.
In the quasi-static limit, the modal admittance becomes

k. b,
Y(o) = j——~r,,

{n i=l,2
q. n~

where

(13)

Using the above, the junction susceptance can be sep-

arated into two parts: the quasi-static contribution Bq and

the correction term A B as

jB = jBq+ jAB (14)

4-M

.{ ()

ab3 where
:.(a, B)=T Re exp[–ja(d–~)]exp j~

1 (f2Y,,)(;>o)+:1 yJ:fi:(;o)}jBq= ~:(o,o) .=l

}
.(-jab3) ’’’., F,(m+p+l;2m+~+v +2; -jab,) (9)

(15)

where Re { } denotes the real part of { } and ~Fl( a; b; z) and

is the confluent hypergeometric function [18, ch. 13]. A 1
power series in z and an asymptotic expansion for large Iz I J* B = F(O, o)

{
2(Y11 – Y;:))z:

()
:,0

are available in [18].

Having obtaining A~’s, the reflection coefficient and the 2

normalized junction admittance can be obtained from + ~ (Y2n– YJ:q Et
( )]

:,0 . (16)
~=1

R=$;o(o, o)–l (lo)
The first infinite series of AB has been truncated at n = 1

1
and the second series at n = 2.

For the case where h = O (without diaphragm), B~ can
Y 1–R be approximated by Montgomery and Lewin’s quasi-static

~=— l+R”
(11) solution (ML) solution [15]:

B ML 2b 2+ E,/cl
—= —

III. Z-TO-I E-PLANE JUNCTION
C(Y A. ‘r’ El10 )

In this section, by way of example of the application of

the basis functions, we consider the structure shown in Fig.
.[~cot~n–21n2– y–~(1–j3)] (17)

2, and we derive correction terms for the quasi-static where

formulas given in [15] and [16].

Assuming that only the dominant mode propagates, it

()
~=~tan-’ 1 ; 261 (18)

can be shown that a variational expression for the normal- 61
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y is the Euler constant= 0.5772, and $ is the logarithmic

derivative of the gamma function.

For the correction term AB, we approximate the aper-

ture field by

“~’=~b”[2-rr(l-v’(1-~)-’+:l‘1”
where v is given by (8).

The first term in the square bracket gives the proper

singularity at the corner. The second term is added since

the aperture field is more uniform for cl >6 ~.

An improved ML solution can be obtained from (14),

(16), and (17) with ~, given by [20]

J _v+,/,(hl) + ~ J1/2(~~)
Et(a,o) =

(/1~)-”+’/’ ,2 (~ap’z
(20)

where JV(X) is the Bessel function of the first kind of order

V [18, ch. 9].

For nonzero d, Bq is given by Ruehle and Lewin (RL

solution) [16] as

“[~cot~7r -21n2-y-+(1-~)-lnc I (21)

where

“()
rh

C=cos m “

The aperture field can be approximated by

E,(Y,=gb3{2-r(l-v)(l-; j-’

[ ($3T’2+3’22)+2”1WV’):1-
The term containing h/b in (22) is to account for the edge

singularity at y = h.
The transform of E, can be found to be [20]

J -“+1/2 (b3~)
Et(a, o) =

(b3a)
_v+l,2 Cos(ah)

H -.~~,z(bsa) ~in(ah)—
(b3a)

–u+l/2

+~{JO(b3a) cos(ab) +Ho(b3a)sin(ab))

CI J1/2(W)
+— (23)

62 (ba)l’2

where Hv(x ) is the Struve function [18, ch. 12]. For h = O,
(23) reduces to (20).

TABLE I
SUSCEPTANCE OF A CAPACITIVE SEMIDIAPHRAGM AS A FUNCTION OF THE

NUMBER OF BASIS FUNCTIONS ( M + 1)

M n 1 2 3 4

Numerical method 1.5935 1.5934 1.5931 1.5931 1.5931
Lyapin et (I1. 1.6123 1.5932 1.5931 1.5931 1.5931

h1=h2=h3= O; b1=bz=2b3; A=2.5bl
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Fig. 3. Susceptance of 2-to-1 E-plane discontinuity: comparison of

solutions.

IV. NUMERICAL RENJLTS

We have computed the susceptance of a capacitive semi-

diaphragm by setting hl = h2 = h3 = O, bl = b2 = 2b3. The

results obtained from the moment method (numerical

method) compare very well with the exact solution. (in

terms of infinite series) given in [2, p. 452]. Our conver-

gence pattern is similar to that of Lyapin et al. [14]. Two to

three basis functions are sufficient to produce results accu-

rate to four or more significant figures, as shown in

Table I.

We next generated results for the structure shown in Fig.

2. The junction susceptance is shown in Fig. 3 for h = O

(without diaphragm). Also shown are the solution by Sich

and Macphie using the conservation of complex power

technique [21], the quasi-static solution by Montgomery

and Lewin using the singular integral equation method

[15], and the conformal mapping solution given in Marcu-

vitz’s Waueguide Handbook [1] (for [~ = (z only). Our

numerical method agrees very well (to within 2 percent)

with the improved ML solution (which is the quasi-static

solution with correct terms). The agreement with the re-

sults of Sich and Macphie is fair, except near c1 = cz,

where our results exhibit a discontinuity of slope. We

believe that the discontinuity in slope could be caused by

the presence of the nonlinear higher order terms in (16)

containing Yll, Y21,Y22, etc. The agreement with Marcu-
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Fig. 4. Susceptance of step-diaphragm junction. b = 0.1 ~.

vitz’s results at CI=ez further confirms the accuracy of

our results. Fig. 4showsthe susceptance for nonzero h for

three chosen sets of values of c,, and C,2. Our results

derived from the moment method agree to within 2 percent

with Sich and Macphie’s solution [21]. It can be seen that

our improved RL solution (which is quasi-static with cor-

rection terms) also agrees very closely with the numerical

method and is significantly more accurate than the quasi-

static solution given by Ruehle and Lewin [16]. For ~,,= 1

and c,Z= 3, as shown in Fig. 4, the required correction is

22.8 percent for h/b = O.

V. CONCLUSIONS

We have proposed a new class of basis functions for the

E-phase junction problem. They are versatile and the edge

singularities can be taken into account explicitly. Numeri-

cal results have been presented for the 2-to-1 E-plane

step-diaphragm junction. We have also proposed a method

to improve the accuracy of the quasi-static solution.
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